Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Rep ; 40(1): 111022, 2022 07 05.
Article in English | MEDLINE | ID: covidwho-1885676

ABSTRACT

The COVID-19 pandemic has triggered the first widespread vaccination campaign against a coronavirus. Many vaccinated subjects are previously naive to SARS-CoV-2; however, almost all have previously encountered other coronaviruses (CoVs), and the role of this immunity in shaping the vaccine response remains uncharacterized. Here, we use longitudinal samples and highly multiplexed serology to identify mRNA-1273 vaccine-induced antibody responses against a range of CoV Spike epitopes, in both phylogenetically conserved and non-conserved regions. Whereas reactivity to SARS-CoV-2 epitopes shows a delayed but progressive increase following vaccination, we observe distinct kinetics for the endemic CoV homologs at conserved sites in Spike S2: these become detectable sooner and decay at later time points. Using homolog-specific antibody depletion and alanine-substitution experiments, we show that these distinct trajectories reflect an evolving cross-reactive response that can distinguish rare, polymorphic residues within these epitopes. Our results reveal mechanisms for the formation of antibodies with broad reactivity against CoVs.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes , Humans , Pandemics , SARS-CoV-2 , Vaccination
2.
Mol Ther Methods Clin Dev ; 24: 355-366, 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1665331

ABSTRACT

SARS-CoV-2 (CoV-2) viral infection results in COVID-19 disease, which has caused significant morbidity and mortality worldwide. A vaccine is crucial to curtail the spread of SARS-CoV-2, while therapeutics will be required to treat ongoing and reemerging infections of SARS-CoV-2 and COVID-19 disease. There are currently no commercially available effective anti-viral therapies for COVID-19, urging the development of novel modalities. Here, we describe a molecular therapy specifically targeted to neutralize SARS-CoV-2, which consists of extracellular vesicles (EVs) containing a novel fusion tetraspanin protein, CD63, embedded within an anti-CoV-2 nanobody. These anti-CoV-2-enriched EVs bind SARS-CoV-2 spike protein at the receptor-binding domain (RBD) site and can functionally neutralize SARS-CoV-2. This work demonstrates an innovative EV-targeting platform that can be employed to target and inhibit the early stages of SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL